FAQ: Fiber Fineness

8. Explain decitex and calculate the fineness in decitex of cotton fiber having diameter of 20 μ m.

Answer:

Decitex: The no. of one gram in 10,000 meters of fiber. Like 10,000 meters of fiber weighs 2 gram means, the count will be 2 decitex.

Decitex:
$$7.85 * 10^{-3} * \rho * d^2$$

= $7.85 * 10^{-3} * 1.52 * 20^2$
= 4.78 decitex

 2 km of wool fiber weighs 850 mg. What will be the Gravimetric Diameter of wool in micron? Consider the specific gravity of wool is 1.31 g/cc. (Assume average fiber length 52 mm)

Answer:

$$d_{grav} = \sqrt{(97190 * W / \sum hn)}$$

= $\sqrt{(97190 * 850) / 200000)}$
= 20.32 µm

10. Calculate the percentage change in the airflow rate if same mass of cotton of 3.5 micronaire is packed in a chamber of an airflow instrument with volume 17.5 cm³ in place of 20 micron wool fibers in the same chamber. Specific gravities of wool and cotton are 1.31 and 1.51 respectively. Consider that the cross-sections of both the fibers are circular and also make all other necessary assumptions.

Answer:

Assumption

Airflow
$$\infty 1/S$$

3.5 micronaire means $3.5 \ge 10^{-6}$ gm per 2.54 cm $\Pi d^2 \ge 2.54 \ge 1.52 = 3.5 \ge 10^{-6}$ By solving the above equation by means of d' $d = 10.7 \ \mu m$

Surface area provided by wool = Total volume $\pi/4 * dw^2 * lw = W / 1.31$ $lw = (W*4) / (1.31*\pi) * dw^2$ $Sw = \pi*dw*lw = (4*W) / 1.31*dw = [4 W / 1.31*20] \infty [1/(1.31*20)]$ Similarly, $Sc = \pi*dc*lc = (4*W) / 1.*dc = [4 W / 1.51*10.7] \infty [1/(1.51*10.7)]$

Airflow $\infty 1/S$

Airflow of wool ∞ 1.31 x 20= 26.2Airflow of cotton ∞ 1.51 x 10.7= 16.157

% of drop of air flow = $[(26.2 - 16.157)/26.2] \times 100 = 38.33\%$

11. A 5.2 micronaire cotton fiber is tested in a Vibroscope with the free distance between the clamp and the support being 1 inch. What will be the mass of the weighing clip (in mg) to have a natural fundamental frequency of vibration of the fiber sample of 2.7 kHz? Make all the necessary assumptions.

Answer:

Formula is

$$M = (wg / \lambda^2 f^2) * 9 * 10^5$$

5.2 = (Wg / 2.54² * 2700²) * 9 * 10⁵
Wg = (5.2 * 2.54² * 2700²) / 9 * 10⁵
= 272 dynes or 186 mg