FAQ: Fiber Fineness

8. Explain decitex and calculate the fineness in decitex of cotton fiber having diameter of 20 $\mu \mathrm{m}$.

Answer:

Decitex: The no. of one gram in 10,000 meters of fiber. Like 10,000 meters of fiber weighs 2 gram means, the count will be 2 decitex.
Decitex: $7.85 * 10^{-3} * \rho * d^{2}$

$$
\begin{aligned}
& =7.85 * 10^{-3} * 1.52 * 20^{2} \\
& =4.78 \text { decitex }
\end{aligned}
$$

9. 2 km of wool fiber weighs 850 mg . What will be the Gravimetric Diameter of wool in micron? Consider the specific gravity of wool is $1.31 \mathrm{~g} / \mathrm{cc}$. (Assume average fiber length 52 mm)
Answer:

$$
\begin{aligned}
\mathrm{d}_{\text {grav }} & =\sqrt{ }\left(97190 * \mathrm{~W} / \sum \mathrm{hn}\right) \\
& =\sqrt{ }(97190 * 850) / 200000) \\
& =20.32 \mu \mathrm{~m}
\end{aligned}
$$

10. Calculate the percentage change in the airflow rate if same mass of cotton of 3.5 micronaire is packed in a chamber of an airflow instrument with volume $17.5 \mathrm{~cm}^{3}$ in place of 20 micron wool fibers in the same chamber. Specific gravities of wool and cotton are 1.31 and 1.51 respectively. Consider that the cross-sections of both the fibers are circular and also make all other necessary assumptions.
Answer:
Assumption
Airflow $\infty 1 / S$
3.5 micronaire means $3.5 \times 10^{-6} \mathrm{gm}$ per 2.54 cm
$\Pi \mathrm{d}^{2} \times 2.54 \times 1.52=3.5 \times 10^{-6}$
By solving the above equation by means of ${ }^{\prime} d^{\prime}$

$$
\mathrm{d}=10.7 \mu \mathrm{~m}
$$

Surface area provided by wool $=$ Total volume
$\pi / 4 * \mathrm{dw}^{2} * 1 \mathrm{w}=\mathrm{W} / 1.31$
$\mathrm{lw}=(\mathrm{W} * 4) /(1.31 * \pi) * \mathrm{dw}^{2}$
$\mathrm{Sw}=\pi * \mathrm{dw}^{*} \mathrm{lw}=(4 * \mathrm{~W}) / 1.31 * \mathrm{dw}=[4 \mathrm{~W} / 1.31 * 20] \infty[1 /(1.31 * 20)]$
Similarly,
$\mathrm{Sc}=\pi^{*} \mathrm{dc} * \mathrm{lc}=(4 * \mathrm{~W}) / 1 . * \mathrm{dc}=\left[4 \mathrm{~W} / 1.51^{*} 10.7\right] \infty[1 /(1.51 * 10.7)]$

Airflow
$\infty 1 / S$

Airflow of wool $\infty 1.31 \times 20 \quad=26.2$
Airflow of cotton $\infty 1.51 \times 10.7=16.157$
$\%$ of drop of air flow $=[(26.2-16.157) / 26.2] \times 100=38.33 \%$
11. A 5.2 micronaire cotton fiber is tested in a Vibroscope with the free distance between the clamp and the support being 1 inch. What will be the mass of the weighing clip (in mg) to have a natural fundamental frequency of vibration of the fiber sample of 2.7 kHz ? Make all the necessary assumptions.
Answer:
Formula is

$$
\begin{aligned}
\mathrm{M} & =\left(\mathrm{wg} / \lambda^{2} \mathrm{f}^{2}\right) * 9 * 10^{5} \\
5.2 & =\left(\mathrm{Wg} / 2.54^{2} * 2700^{2}\right) * 9 * 10^{5} \\
\mathrm{Wg} & =\left(5.2 * 2.54^{2} * 2700^{2}\right) / 9 * 10^{5} \\
& =272 \text { dynes or } 186 \mathrm{mg}
\end{aligned}
$$

